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Figure 1: DiffDreamer (Top) is a novel diffusion-based approach for scene extrapolation. It exhibits high spatio-temporal
consistency, a desired property missing in prior art, such as InfNat-0 [39] (Bottom). We check for consistency by extracting
keypoints from the sequences with COLMAP, resulting in point clouds of vastly different sizes and sparsity (Right).

Abstract

Scene extrapolation—the idea of generating novel views
by flying into a given image—is a promising, yet challeng-
ing task. For each predicted frame, a joint inpainting
and 3D refinement problem has to be solved, which is ill
posed and includes a high level of ambiguity. Moreover,
training data for long-range scenes is difficult to obtain
and usually lacks sufficient views to infer accurate cam-
era poses. We introduce DiffDreamer, an unsupervised
framework capable of synthesizing novel views depicting
a long camera trajectory while training solely on internet-
collected images of nature scenes. Utilizing the stochastic
nature of the guided denoising steps, we train the diffusion
models to refine projected RGBD images but condition the
denoising steps on multiple past and future frames for in-
ference. We demonstrate that image-conditioned diffusion
models can effectively perform long-range scene extrapola-
tion while preserving both consistency significantly better
than prior GAN-based methods. DiffDreamer is a powerful
and efficient solution for scene extrapolation, producing im-
pressive results despite limited supervision. Project page:
https://primecai.github.io/diffdreamer.

1. Introduction

3D content creation tools are the foundation of emerging
metaverse applications, among many others. Current ap-
proaches primarily rely on heavy manual labor, making the
process expensive and inefficient. We set out to make 3D
content creation automated and accessible. More specifi-
cally, an important downstream task we approach is con-
sistent scene extrapolation. Given a single image and a
long camera trajectory flying into the scene, the goal of
consistent scene extrapolation is to synthesize a multiview-
consistent 3D scene along the camera trajectory. In other
words, we want to teach a machine to hallucinate content
when flying into the image while maintaining multiview
consistency, thereby extrapolating the scene realistically.
Successfully addressing this task opens up a wide range of
potential applications in virtual reality, 3D content creation,
synthetic data creation, and 3D viewing platforms.

Consistent scene extrapolation is extremely challenging
as it tries to tackle two difficult tasks simultaneously: con-
sistent single-view novel view synthesis (NVS) and long-
range extrapolation. Consistent single-view novel view
synthesis has been studied for a long time. Many meth-
ods [66, 48] propose utilizing multi-view data to infer the
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correspondences between frames, but they generally do not
scale down to single- or few-view settings. Recently, there
have also been attempts at single-view novel view synthe-
sis. These methods mostly rely on learning a prior [99, 7] or
utilizing geometry information [97, 96, 67]. However, they
do not generalize to long-range camera movement, as the
content of the original image is quickly lost when taking
large camera movements. Current methods of long-range
extrapolation [41, 39, 64, 35, 69] employ per-frame gener-
ation protocols, where the frames are generated in an auto-
regressive feed-forward manner. The common downside
of these methods is the lack of consistency between subse-
quent frames due to the per-frame refinement. A few recent
methods [19, 4] attempt to generate a whole scene directly
using implicit representations. However, this setting is
computationally expensive, causing them to fail to achieve
photo-realism even on low-resolution synthetic data.

Very recently, efforts have been made to perform scene
extrapolation using pre-trained large-scale text-to-image
diffusion models [60, 68]. This line of methods relies on
prompt engineering and produces results with jittering be-
tween frames due to the lack of consistency enforcement.
However, image-conditioned diffusion models are naturally
suitable for the task of scene extrapolation, as the guided
denoising process can be interpreted as a search in the la-
tent space. Compared to feed-forward GAN-based meth-
ods [41, 39, 35], this allows the model to preserve high-level
semantic meaning and low-frequency features while adding
in high-frequency details and in-painting the missing parts.
We hence utilize these strengths of diffusion models for
scene exploration and further improve its 3D consistency.

In this paper, we propose DiffDreamer, a fully unsu-
pervised method capable of consistent scene extrapolation
given only a single image as input, and only internet photo
collections as training data. Inspired by recent success in
diffusion-based image refinement [43, 70], we formulate
consistent scene extrapolation as learning a conditional dif-
fusion model from images only. We train the conditional
diffusion model to generate the frames in an iterative re-
finement manner, showing that this allows convergence to-
wards a harmonic set of frames with high fidelity. The con-
sistency achieved by our conditional diffusion model poten-
tially enables one to fuse the outputs as a 3D model, e.g., a
NeRF [48] with high consistency score [95]. A key advan-
tage of diffusion models is the flexibility of modifying their
sampling behaviors at inference. By stochastic condition-
ing at inference, we can condition the generation on multi-
ple past and future frames and form a bidirectional pipeline,
despite having only single images during training.

Experiments demonstrate that our framework allows one
to synthesize a long-range fly-through sequence into an
RGB image. We believe our framework not only serves
as a starting point for consistent scene extrapolation and

diffusion-model-based novel view synthesis but also scene
extrapolation on more complex large-scale scenarios, such
as autonomous driving scenes.

Our contributions include

• We introduce DiffDreamer, the first single-view scene
extrapolation framework based on diffusion models for
large-scale scenes.

• We propose an anchored sampling strategy and a looka-
head mechanism for long-range scene extrapolation.
Combined with diffusion models, we significantly alle-
viate the well-known domain drifting issue [41, 39] of
scene extrapolation.

• We demonstrate a fully automated scene-level novel view
synthesis pipeline using conditional diffusion models.

2. Related works
Novel view synthesis from multi-view images Research
related to Novel View Synthesis (NVS) has a long history.
Traditional multi-view NVS relies on inferring underlying
geometry and interpolating the input images [57, 11, 17,
18, 21, 36, 14, 24, 38, 77, 106]. Recent successful attempts
utilize deep learning methods to construct scene representa-
tions from multi-view data. These scene representations in-
clude but are not limited to: depth images [1, 46, 65, 98, 91,
80], multi-plane images [89, 104], voxels [42, 83], and im-
plicit functions [84, 54, 56]. Among these representations,
major progress has been made on radiance field approaches.
Neural Radiance Fields (NeRFs) [48] have demonstrated
encouraging progress for view synthesis by encoding color
and transmittance in a multilayer perceptron, hence en-
coding a scene as an implicit representation. Using volu-
metric rendering, NeRF can perform photo-realistic novel
view synthesis from only multi-view captured images and
their poses. The outstanding performance of NeRF attracts
tremendous efforts to improve its performance [2, 3, 92, 15],
accelerate its training [49, 73, 87, 53], speed up render-
ing [40, 82], extend or generalize it towards other down-
stream tasks [44, 47, 8, 9, 76, 50, 25, 105], etc. Unlike these
multi-view methods, we assume a single input image at the
inference stage, where no geometry or interpolation can be
inferred easily. Even with a single input image, our method
can produce novel views faithfully.

Novel view synthesis from a single image There has
been a vein of research on single-shot NVS. Some of them
rely on geometry information or annotations [51, 81, 90].
However, geometry information and annotations are usu-
ally expensive to obtain for in-the-wild images. Other meth-
ods [16, 99, 7, 91, 84, 32, 88] relax this constraint by learn-
ing a prior filling in the missing information. These meth-
ods typically either only work well on simple objects (e.g.,
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Figure 2: Overview of our pipeline. We train an image-conditional diffusion model to perform image-to-image refinement
and inpainting given a corrupted image and its missing region mask. At inference, we perform stochastic conditioning
on three conditionings: naive forward warping from the previous frame (black arrow), anchored conditioning by warping
a further frame (blue arrow), and lookahead conditioning by warping a virtual future frame (red arrow). We repeat this
render-refine-repeat pipeline to get sequences extrapolating a given image.

ShapeNet [10]) or restrict camera motions to small regions
around the reference view. In contrast, we aim to relax such
constraints and target long-range view extrapolation.

Scene extrapolation Long-range view extrapolation re-
quires going beyond observations. With recent progress
in generative modeling, several view extrapolation meth-
ods have emerged [6, 13, 37, 31, 34, 55, 78, 93, 102, 69].
Earlier methods such as SynSin [96] perform inpainting af-
ter reprojection, which struggles after a very limited range.
A follow-up work, PixelSynth [67], works similarly to our
DiffDreamer; it performs large-step image outpainting and
accumulates a 3D point cloud for intermediate refinement
and rendering. However, PixelSynth does not generalize to
larger camera movements and requires a refinement module
on top of the point cloud to enhance and inpaint, causing
severely inconsistent intermediate view synthesis results.

Long-term path synthesis State-of-the-art methods such
as InfNat [41], InfNat-0 [39], PathDreamer [35] and
LOTR [64] deploy iterative training protocols and achieve
perpetual view extrapolation for extremely long camera
trajectories. However, these methods work in an auto-
regressive per-frame generation framework. As a conse-
quence, severe inconsistency can be observed from their
rendered frames. Solving such inconsistency potentially
requires generating an entire 3D world model, which is
extremely computationally expensive, as shown by previ-
ous works [19, 4], whilst feed-forward per-frame generation
methods [69, 41, 39] suffer from content drifting and both
local and global inconsistency. Therefore, we attempt to

benefit from a diffusion-based iterative refinement method
to generate consistent content.

Diffusion models The recent development of diffusion
models [27, 86] has pushed AI-driven content creation
to another level. These methods learn to transform any
data distribution into a prior distribution, then sample new
data by first sampling a random latent vector from the
prior distribution, followed by ancestral sampling with
the reverse Markov chain, parameterized by deep neural
networks. The powerful diffusion/denoising mechanism
enables various traditional image-based tasks, including
super-resolution [71, 28], inpainting [43, 70], and edit-
ing [45]. Their well-defined steady training protocols en-
hance the diffusion models’ performance for large-scale
training [68, 60]. Very recently, success has been made
to lift the strength of diffusion models to the 3D do-
main [58, 95], further demonstrating the potential of 3D-
based diffusion models.

We formulate our task similarly to InfNat [41] and
InfNat-0 [39], but use a conditional diffusion model instead
of GANs and take focus on achieving consistency.

3. DiffDreamer
Given a single input image, the aim of DiffDreamer is

to generate a consistent and harmonic 3D camera trajectory
that represents flying into the given image. DiffDreamer
addresses this task by training a conditional diffusion model
to perform image inpainting and refinement concurrently.
The overview of our pipeline is illustrated in Fig. 2.

We synthesize frames of a fly-through video with three



steps: render, refine and repeat. In detail, given an RGB
image Ii with its monocular predicted disparity Di lo-
cated at camera pose ci, we can unproject the colored
pixels into 3D space and render the projected view at
the next camera pose ci+1 by a 3D renderer [62] π:
(I ′i+1, D

′
i+1) = π(Ii, Di, ci, ci+1). With a refinement net-

work Fθ, the warped RGBD image (I ′i+1, D
′
i+1) can be in-

painted and refined to get a fine next frame (Ii+1, Ii+1) =
Fθ(I

′
i+1, D

′
i+1), shown by the black arrow flow in Fig. 2.

We then treat (Ii+1, Di+1) as the starting view of the next
step and perform the warping and refinement stages repeat-
edly, yielding a set of frames extrapolating the scene.

3.1. Training

Prior works [41, 39] model the training process exactly
as the render-refine-repeat pipeline since the process is fully
differentiable. However, this naive approach is not general-
izable to diffusion models for two reasons: 1) the training
process of diffusion models is split into different noise lev-
els, and 2) sampling from a diffusion model requires up to
thousands of denoising steps. This means we need to store
thousands of intermediate steps and gradients to perform
back-propagation, which is computationally infeasible.

The main function of the “repeat” step during training
is to feed the network with its own outputs to ameliorate
distribution drifting [41]. Therefore, it becomes critical
to replace this step, especially when diffusion models are
known to be sensitive to input distribution. Firstly, we cre-
ate training pairs similar to [39] by projecting a ground
truth RGBD image (Igt, Dgt) at initial camera pose c0 to a
pseudo previous camera pose cpseudo: (Ipseudo, Dpseudo) =
π(Igt, Dgt, c0, cpseudo), then project back to c0 to create a
corresponding corrupted RGBD: (Icorrupted, Dcorrupted) =
π(Ipseudo, Dpseudo, cpseudo, c0)). We thus obtain a pair of
ground truth RGBD images (Igt, Dgt) and its corrupted ver-
sion (Icorrupted, Dcorrupted), which involves missing parts
and warping artifacts simulating a forward motion.

Having these paired data enables training an image-
conditioned diffusion model p(y|x,m), where x =
(Icorrupted, Dcorrupted), a corrupted version of ground truth
image y = (Igt, Dgt) while m denotes the missing region
mask from warping. We train the model with the following
objective [27, 70]:

L(θ) = E(x,m,y)EϵEγ

[
∥fθ(x,m, ỹ, γ)− ϵ∥22

]
, (1)

where ỹ =
√
γ y +

√
1−γ ϵ , ϵ ∼ N (0, I) , and γ indi-

cates the noise level. Note that since the diffusion model
needs to concurrently learn inpainting and refinement, we
additionally condition the neural network on the missing
region mask to provide stronger guidance, following prior
works [41, 39]. Similar to previous work [39], we assume
that the sky region lies infinitely far away and does not

change. Therefore, we inject noise only to the ground re-
gion to obtain ỹ.

3.2. Inference

Diffusion models trained as described above perform
well for a single forward step but do not generalize to long-
term due to severe domain drifting after only a few itera-
tions. This causes the extrapolated results to gradually drift
away after only a handful of steps (see Sec. 4.2). We pro-
pose two strategies at the inference stage to counter this is-
sue and preserve both local and global consistency.

3.2.1 Anchored conditioning

We introduce anchored conditioning, which conditions
the diffusion model on long-range camera movements
in order to enhance consistency over larger distances.
As shown in prior work [95], it is feasible to naively
approximate true auto-regressive sampling via stochas-
tic conditioning for conditional diffusion models. While
moving forward from camera pose ci to ci+1, instead
of strictly conditioning on the warped previous image
(Iwarped, Dwarped) = π(Ii, Di, ci, ci+1)) and mask dur-
ing the inference denoising stage, we additionally select
a frame (Ifar, Dfar) at a previous camera pose cfar fur-
ther away from the current camera position. In prac-
tice, we empirically select the current frame (Ii, Di) ev-
ery 5 steps. We then perform stochastic conditioning on
the warped previous frame (Iwarped, Dwarped) and an “an-
chored” frame by warping (Ifar, Dfar) to the desired cam-
era pose: (Ianchored, Danchored) = π(Ifar, Dfar, cfar, ci+1).
We perform this conditioning without specifying the miss-
ing region mask, as anchored conditioning requires longer-
range warping, which may introduce more regions as miss-
ing, thus undermining the goal of long-term consistency.
Conditioning on the warped previous frame naively en-
courages frame-to-frame consistency, while conditioning
on a far-away frame offers long-term consistency. Stochas-
tic conditioning on a largely warped image is also helpful
with respect to domain drifting, as it is easier to simulate
the same artifacts and blurriness during training by simply
warping ground truth images equally further away. Thanks
to the diffusion models’ steady training protocol, refining
and inpainting largely warped images with massive missing
areas can be learned jointly during training.

3.2.2 Virtual lookahead conditioning

Prior works [41, 39] deploy per-frame generation; there-
fore, they suffer from severe inconsistency. A straightfor-
ward approach to solve this is to generate a scene represen-
tation directly, but this is extremely challenging and expen-
sive to perform. While anchored conditioning solves parts
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Figure 3: Qualitative comparisons of InfNat-0 [39] and our DiffDreamer generation, for which we ask the models to fly
toward a target region and compare the outputs. Note that as InfNat-0 [39] is not 3D consistent and may need more steps
even with identical input disparities and camera speed, we manually inserted more refinement steps to our DiffDreamer to
ensure it is a fair comparison. Even so, we do not observe significant drifting from our DiffDreamer, while InfNat-0 [39] is
incapable of preserving the input domain.

of the global consistency issue, warping an image distorts
and stretches the texture, and blurs out fine details.

We notice that compared with flying into an image and
refining the artifacts and blurriness, it is significantly easier
to zoom out of an image and outpaint the missing regions
without suffering from domain drift. This is due to the avail-
able regions preserving high-frequency details, which con-
fer a strong signal for filling in missing regions.

Therefore, adding in a “lookahead” mechanism in diffu-
sion models is helpful for both achieving long-term con-
sistency and preventing domain drifting, as we can ben-
efit from conditioning the generation on a future image,
whose fine details preserve after warping to the current
pose. While flying deep into an image, we observe that the
generated content shares little overlap with the input image.
Utilizing this fact, we can create a virtual view lying ahead
for a sequence of views. With stochastic conditioning, this
is as simple as additionally conditioning the generation on
(Ifuture, Dfuture), acquired by warping a shared virtual view
(In, Dn) lying ahead at a shared virtual future camera pose
cn warped to each camera pose ci: (Ifuture, Dfuture) =
π(In, Dn, cn, ci). In practice, we empirically generate cn by
taking a forward motion 10 times larger than a single step.
We update the shared (In, Dn) every 10 steps and condition
the future 10 frames on it. The shared virtual view can be
flexibly generated by refining an available view to a future
camera pose, a randomly generated view, or even another
real image. To preserve consistency, we find it is suitable to
warp the current frame (Ii, Di) to a future camera pose cn
significantly beyond a single forward motion so that there is

enough ambiguity, then refine to get virtual lookahead con-
ditioning (Ifuture, Dfuture).

With the proposed anchored and virtual lookahead con-
ditioning, we can formulate each denoising step going from
camera pose ci to ci+1 as:

yt−1 ←
1
√
αt

(
yt −

1− αt√
1− γt

fθ(xi,mi,yt, γt)

)
+
√
1− αtϵt

(2)

at the inference stage, where xi is a weighted se-
lection of (0.5, 0.25, 0.25) among (Iwarped, Dwarped),
(Ianchored, Danchored) and (Ifuture, Dfuture), with mi be-
ing the missing region mask. We apply classifier-free guid-
ance [29] during inference as it encourages the denoising
process to take more signals from the conditioning.

3.3. Training details

We carefully design the training protocols according to
our inference strategies. Firstly, instead of assuming a fixed
step size like previous works [41, 39], we randomly choose
step size from a range (−s, s) while training the model to
generalize to long-range conditioning, where we empiri-
cally choose s = 20. Note that we also train the model
to fly out of the image for the purpose of lookahead condi-
tioning. We find injecting random Gaussian noise into the
missing regions rather than preserving the stretched details
or masking out the missing regions to be very helpful, as
it serves as an additional latent space that encourages di-
versity and effectively reduces the domain drifting between



forward motions and circular motions we used for creat-
ing pseudo training pairs. To add support for classifier-free
guidance [30] at inference, we zero out all conditioning in-
puts with 10% probability during training.

4. Experiments
4.1. Evaluation

Datasets We report results on the LHQ [85] dataset, a col-
lection of 90K nature landscape photos. Following prior
work [39], we use the full data for training and 100 images
provided by [39]’s authors, generated from a pre-trained
StyleGAN2 [33], as the test set. Following [41], we also
supply quantitative results on the ACID [41] dataset, with
evaluation on 50 input images from its test set.

Evaluation metrics Evaluation of scene extrapolation
frameworks is non-trivial as there is no single evaluation
metric that covers every aspect of the generation quality.
We follow the evaluation protocol of prior works [41, 39] on
the rendered sequences. For that, we report Inception Score
(IS) [72], Frechet Inception Distance (FID) [26] and Kernel
Inception Distance (KID) [5] with scaling factor ×10 com-
puted using the torch-fidelity package [52]. We evaluate the
models in two settings: a shorter range of 20 refinement
steps, a middle range of 50 steps, and a longer range of 100
refinement steps. We additionally report 3D consistency
scoring [95], a recent metric for evaluating 3D consistency.
We compute this metric by generating a sequence of frames
from an input, training a neural field [48] with a fraction
of the generated frames, and calculating PSNR (Peak Sig-
nal to Noise Ratio), SSIM (Structural Similarity Index Mea-
sure) [94] and Perceptual Similarity (LPIPS) [103] against
the held-out generated frames. We evaluate 3D consistency
scoring over 10 sequences of 30 frames from 10 randomly
selected input images. As our prior works [41, 39] also
output disparity maps, we use a disparity supervised DV-
GOv2 [87] as the underlying neural field model. Follow-
ing [95], we zero out the viewing direction conditioning to
avoid overfitting to view-dependencies. To further assess
local consistency, we compare the number of points from
COLMAP [74, 75] reconstruction on the same 10 rendered
video sequences, using the default automatic reconstruction
without specifying the camera poses.

Qualitative results Qualitative comparisons are shown in
Fig. 3, where we ask the rendering models to fly toward a
target. We compare the intermediate frames rendered by the
model. Interestingly, we find that even with identical input
depth and step size, it takes significantly more refinement
steps for InfNat-0 [39] to reach a target due to a tendency
to render the far plane to be further than the mesh projec-
tion. In contrast, our DiffDreamer maintains high 3D con-

first 20 steps first 50 steps full 100 steps
Method FID↓ KID↓ IS↑ FID↓ KID↓ IS↑ FID↓ KID↓ IS↑

InfNat-0 [39] 39.45 0.12 2.80 36.53 0.11 2.79 26.24 0.12 2.72

DiffDreamer 34.49 0.08 2.82 38.86 0.12 2.90 51.0 0.28 2.99

Table 1: Quantitative results on LHQ [85] for 20 steps, 50
steps, and 100 steps generation. To our knowledge, InfNat-
0 [39] is the only prior work capable of long-range view
synthesis without supervision from sequential data or accu-
rate ground truth depth.

first 20 steps first 50 steps full 100 steps
Method FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑
SynSin [96] 79.58 0.63 1.90 96.37 0.78 1.71 108.95 1.06 1.75
PixelSynth [67] 89.63 1.10 1.23 97.14 1.32 1.42 107.61 1.20 1.63
3D Photos [80] 99.79 0.80 1.65 123.60 0.79 1.12 111.39 0.87 1.58
InfNat [41] 59.93 0.22 2.36 57.47 0.26 2.28 48.27 0.27 2.28

DiffDreamer 52.81 0.12 2.69 61.04 0.26 2.86 70.11 0.41 2.82

Table 2: Quantitative results on ACID [41] for 20 steps,
50 steps, and 100 steps generation. Note that all prior works
require posed multi-view sequences for training, while our
DiffDreamer is trained from single image collections.

sistency, and because it takes fewer steps to reach a target,
it exhibits less drift. However, to ensure a fair comparison
with [39] and to evaluate our model’s drift under more re-
finement steps, we manually insert additional intermediate
camera poses between each pair of nearby autocruise [41]
poses so that the models conduct exactly the same number
of refinement steps to reach the final frame.

We compare DiffDreamer’s consistency against InfNat-
0 in Fig. 5, along with a reference mesh projection cre-
ated by warping the initial image into the final view ac-
cording to the estimated disparity map. With identical dis-
parity map and step size provided by InfNat-0 [39]’s au-
thors, our model shows significantly better alignment with
the projected mesh. While InfNat-0 [39] renders decent in-
termediate frames, it demonstrates only limited consistency
with the mesh. Although it accurately models the expected
movement of the foreground, the hill in the mid-distance
remains static, whereas we expect it to fill the frame as the
camera flies forward. This artifact may be due to a bias that
encourages maintaining useful distant content while train-
ing scene extrapolation models. By enforcing the looka-
head mechanism, which enforces future frames to be con-
sistent with the mesh projection, our DiffDreamer does not
suffer from this issue. We show an example of the detail-
preserving ability of DiffDreamer in Fig 6.

We additionally visualize examples of scene extrapola-
tion of 50 steps in Fig. 4. Despite only seeing single images
during training, the learned generative prior enables Diff-
Dreamer to perform long-range extrapolation.



Figure 4: Long-range view extrapolation of over 50 steps forward.
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Figure 5: Comparison of 3D consistency achieved by our DiffDreamer and InfNat-0 [39], where we ask the camera to fly
towards the top of the hill and show the intermediate renderings at camera positions c0 to c5.

Method PSNR↑ SSIM↑ LPIPS↓

InfNat [41] 19.94±1.63 0.55±0.07 0.18±0.04
InfNat-0 [39] 18.92±1.42 0.41±0.08 0.20±0.02

DiffDreamer 23.56±3.30 0.68±0.04 0.12±0.02

Table 3: 3D consistency scoring [95], where we train dis-
parity supervised DVGOv2 [87] using 10 sequences gen-
erated by the models and report the mean±std novel view
synthesis metrics.

Quantitative results We show the quantitative evaluation
on LHQ [85] in Tab. 1 and ACID [41] in Tab. 2. We observe
that our 20-step generation outperforms prior works on all
metrics by a relatively large margin. Our 50-step generation
also has a significant advantage over prior works except for
InfNat [41] and InfNat-0 [39], which are on par with our
model. Our DiffDreamer’s 100-step generation is not as
good as [41] and [39] on FID [26] and KID [5] while achiev-

Method Avg. points reconstructed

InfNat [41] 1476±477
InfNat-0 [39] 612±104

DiffDreamer 3124±622

Table 4: Number of reconstructed points via
COLMAP [74, 75], where we run COLMAP on 10
generated sequences, count the number of reconstructed
points and report mean±std.

ing higher IS [72]. However, we achieve significantly bet-
ter 3D consistency metrics, as shown in Tab. 3 and Tab. 4.
Our model performs scene extrapolation based on the pre-
sented content from the input image very well, but we do
not enforce it to generate diverse content. Therefore, the
model may output blander frames after it goes significantly
beyond the input. We also notice that our better 3D con-
sistency makes autocruise [41] fail and hit the ground/hills
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Figure 6: Detail preservation of over 30 steps. DiffDreamer can preserve details upon long-range extrapolation.
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Figure 7: Ablation study, where we disabled our key build-
ing blocks. We observe clear artifacts (naive, no lookahead)
or inconsistency (no anchored) in all ablations.

more often, constituting a large portion of the failed scenes.
This is due to our model preserving geometry cues—it does
not refine regions to be further away from their actual posi-
tions. Note that though InfNat [41] and InfNat-0 [39] can
synthesize sequences with hundreds of frames, they resem-
ble complete trade-offs with consistency. We argue that
without accurate geometry preservation, scene extrapola-
tion models [41, 39] will converge towards random latent
space walk using pretrained GANs.

4.2. Ablation studies

We perform a thorough ablation study to verify our de-
sign choices, shown in Fig. 7. The setups are: 1) Naive
auto-regressive: we first set up a baseline by performing the
simplest per-step generation. The naive method fails after
only a few refinement steps. This is due to the input domain
drifting as observed in prior works [41, 39]. 2) Without an-
chored conditioning: next, we disable anchored condition-

ing: we observe more severe 3D inconsistency while mov-
ing forward, as the conditioning signal is purely from the
past frame. 3) Without lookahead conditioning: we proceed
with removing the lookahead mechanism. We observe sig-
nificant domain drifting and artifacts as the model no longer
takes advantage of the easier flying-out task. We supply the
corresponding quantitative ablations in Appendix Sec. B.

5. Discussion
In this paper, we introduced DiffDreamer, a novel un-

supervised pipeline based on conditional diffusion models
for scene extrapolation. Diffdreamer can conduct scene ex-
trapolation capable of “flying” into the image while train-
ing only from internet-collected single images. The key
idea of DiffDreamer is to utilize a conditional diffusion
model to simultaneously inpaint and refine a corrupted im-
age obtained by warping a previous image. This is accom-
plished by training a conditional diffusion model that is ca-
pable of performing image-to-image translation under var-
ious corruption augmentations and utilizing stochastic con-
ditioning to refine a corrupted image given multiple con-
ditioning. Our model demonstrated comparable generation
quality with GAN-based methods while maintaining signif-
icantly better consistency than prior works.

Limitation and future work DiffDreamer cannot syn-
thesize novel views in real time due to the heavy inference
of diffusion models. However, speeding up diffusion mod-
els’ inference has been a very active area, and we expect
advances in this area to speed up our approach directly. In
addition, we do not enforce the diversity of content while
going significantly beyond the input image, causing degra-
dation for a true perpetual generation. We believe adding
CLIP [59] conditioning to be a very exciting extension.

Conclusion Diffusion models are emerging as state-of-
the-art generative 2D methods. DiffDreamer is the first ap-
proach to apply them to 3D scene extrapolation, demon-
strating a high amount of view consistency that is crucial
for many downstream tasks.
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Hornung, and George Drettakis. Depth synthesis and local
warps for plausible image-based navigation. TOG, 2013. 2

[12] Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. Rethinking atrous convolution for se-
mantic image segmentation. CVPR, 2017. 1

[13] Qifeng Chen and Vladlen Koltun. Photographic image syn-
thesis with cascaded refinement networks. In ICCV, 2017.
3

[14] Shenchang Eric Chen and Lance Williams. View inter-
polation for image synthesis. In Proceedings of the 20th
annual conference on Computer graphics and interactive
techniques, 1993. 2

[15] Tianlong Chen, Peihao Wang, Zhiwen Fan, and Zhangyang
Wang. Aug-nerf: Training stronger neural radiance fields
with triple-level physically-grounded augmentations. In
CVPR, 2022. 2

[16] Xu Chen, Jie Song, and Otmar Hilliges. Monocular neural
image based rendering with continuous view control. In
ICCV, 2019. 2

[17] Paul Debevec, Yizhou Yu, and George Borshukov. Effi-
cient view-dependent image-based rendering with projec-
tive texture-mapping. In Eurographics Workshop on Ren-
dering Techniques, 1998. 2

[18] Paul E Debevec, Camillo J Taylor, and Jitendra Malik.
Modeling and rendering architecture from photographs: A
hybrid geometry-and image-based approach. In Proceed-
ings of the 23rd annual conference on Computer graphics
and interactive techniques, 1996. 2

[19] Terrance DeVries, Miguel Angel Bautista, Nitish Srivas-
tava, Graham W. Taylor, and Joshua M. Susskind. Uncon-
strained scene generation with locally conditioned radiance
fields. In ICCV, 2021. 2, 3

[20] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 1

[21] Andrew Fitzgibbon, Yonatan Wexler, and Andrew Zisser-
man. Image-based rendering using image-based priors.
IJCV, 2005. 2

[22] Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali
Dekel. Scenescape: Text-driven consistent scene genera-
tion. arXiv, 2023. 1

[23] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron
Sarna, Daniel Vlasic, and William T. Freeman. Unsuper-
vised training for 3d morphable model regression. In The
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2018. 2

[24] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In Proceedings of the
23rd annual conference on Computer graphics and inter-
active techniques, 1996. 2

[25] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu
Liu. GANcraft: Unsupervised 3D Neural Rendering of
Minecraft Worlds. In ICCV, 2021. 2

[26] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by
a two time-scale update rule converge to a local nash equi-
librium. NeurIPS, 2017. 6, 7

[27] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. NeurIPS, 2020. 3, 4

[28] Jonathan Ho, Chitwan Saharia, William Chan, David J
Fleet, Mohammad Norouzi, and Tim Salimans. Cascaded
diffusion models for high fidelity image generation. JMLR,
2022. 3

[29] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 5

[30] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 6



[31] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 3

[32] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In ICCV,
2021. 2

[33] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. In NeurIPS, 2020. 6

[34] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 3

[35] Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge,
and Peter Anderson. Pathdreamer: A world model for in-
door navigation. In ICCV, 2021. 2, 3

[36] Johannes Kopf, Fabian Langguth, Daniel Scharstein,
Richard Szeliski, and Michael Goesele. Image-based ren-
dering in the gradient domain. TOG, 2013. 2

[37] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Ca-
ballero, Andrew Cunningham, Alejandro Acosta, Andrew
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a gener-
ative adversarial network. In CVPR, 2017. 3

[38] Marc Levoy and Pat Hanrahan. Light field rendering. In
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, 1996. 2

[39] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo
Kanazawa. Infinitenature-zero: Learning perpetual view
generation of natural scenes from single images. In ECCV,
2022. 1, 2, 3, 4, 5, 6, 7, 8, 9

[40] D. B.* Lindell, J. N. P.* Martel, and G. Wetzstein. Autoint:
Automatic integration for fast neural volume rendering. In
CVPR, 2021. 2

[41] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh
Makadia, Noah Snavely, and Angjoo Kanazawa. Infinite
nature: Perpetual view generation of natural scenes from a
single image. In ICCV, October 2021. 2, 3, 4, 5, 6, 7, 8, 1

[42] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 2

[43] Andreas Lugmayr, Martin Danelljan, Andres Romero,
Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint: In-
painting using denoising diffusion probabilistic models. In
CVPR, 2022. 2, 3

[44] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-
jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel
Duckworth. NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections. In CVPR, 2021. 2

[45] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided
image synthesis and editing with stochastic differential
equations. In ICLR, 2021. 3

[46] Moustafa Meshry, Dan B. Goldman, Sameh Khamis,
Hugues Hoppe, Rohit Pandey, Noah Snavely, and Ricardo
Martin-Brualla. Neural rerendering in the wild. CoRR,
2019. 2

[47] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P. Srinivasan, and Jonathan T. Barron. NeRF in the

dark: High dynamic range view synthesis from noisy raw
images. CVPR, 2022. 2

[48] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 6

[49] Thomas Müller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives with
a multiresolution hash encoding. SIGGRAPH, 2022. 2

[50] Michael Niemeyer and Andreas Geiger. Giraffe: Repre-
senting scenes as compositional generative neural feature
fields. In CVPR, 2021. 2

[51] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d
ken burns effect from a single image. TOG, 2019. 2

[52] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen
Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin. High-
fidelity performance metrics for generative models in py-
torch, 2020. 6

[53] Anton Obukhov, Mikhail Usvyatsov, Christos Sakaridis,
Konrad Schindler, and Luc Van Gool. Tt-nf: Tensor train
neural fields. arXiv, 2022. 2

[54] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape representa-
tion. In CVPR, 2019. 2

[55] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-
Yan Zhu. Semantic image synthesis with spatially-adaptive
normalization. In CVPR, 2019. 3

[56] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In ECCV, 2020. 2

[57] Eric Penner and Li Zhang. Soft 3d reconstruction for view
synthesis. TOG, 2017. 2

[58] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,
2022. 3

[59] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. CoRR, 2021. 8

[60] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional image
generation with clip latents. arXiv, 2022. 2, 3
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DiffDreamer: Towards Consistent Unsupervised Single-shot Scene Extrapoaltion
with Conditional Diffusion Models

Supplementary Material

A. Additional qualitative results
Figures 11, 12, 13, and 14 show additional scene ex-

trapolation results from our model with 50 steps of forward
motion. The task of scene extrapolation has a multi-modal
nature: given a single input image, there could be infinite
ways of generation. Therefore, we show multiple rendering
trajectories of over 50 steps for each input image and sup-
porting videos with framerates upsampled using [63] (note
that the videos are rendered at 128×128 and may appear
blurry under higher resolution). To encourage diversity
and prevent hitting mountains/the ground while generating
longer sequences, we can additionally condition the diffu-
sion model on randomly selected patterns from the input im-
age while generating the pseudo future frames with a weight
of 0.2. We select these patterns by simply performing
free-form brush stroke masking, using the algorithm pro-
vided in [100, 101] and refer to this diversity-focused ver-
sion as “DiffDreamer-diverse”, encouraging diversity over
long-range at a price of trading-off consistency. We supply
results for this diversity-focused setting and show frames
from a generated 500-step sequence in Fig. 8.

B. Additional quantitative results
We supply quantitative ablation comparisons including

DiffDreamer-diverse on LHQ [85] in Tab. 5, and additional
quantitative results of DiffDreamer-diverse on ACID [41] in
Tab. 6.

20 steps 50 steps 100 steps COLMAP
Method FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑
InfNat-0 39.45 0.12 2.80 36.53 0.11 2.79 26.24 0.12 2.72 612

Auto-regressive 70.53 0.53 1.99 77.81 0.63 1.91 90.69 0.81 2.14 2030
No anchored 38.41 0.17 2.70 46.40 0.24 2.63 58.67 0.40 2.79 1543
No lookahead 68.30 0.46 1.76 75.18 0.74 1.85 92.85 0.81 2.06 2457

DiffDreamer 34.49 0.08 2.82 38.86 0.12 2.90 51.0 0.28 2.99 3124
DiffDreamer-diverse 34.92 0.09 3.19 30.78 0.10 3.27 24.04 0.12 3.26 1403

Table 5: Quantitative ablation studies.

20 steps 50 steps 100 steps COLMAP
Method FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑ FID ↓ KID ↓ IS ↑
InfNat 59.93 0.22 2.36 57.47 0.26 2.28 48.27 0.27 2.28 1476

DiffDreamer 52.81 0.12 2.69 61.04 0.26 2.86 70.11 0.41 2.82 3423
DiffDreamer-diverse 51.28 0.15 2.37 44.44 0.19 2.40 42.97 0.21 2.43 1883

Table 6: Quantitative comparison of DiffDreamer-diverse’s
performance on ACID [41].

C. Flying-out
Even though we do not design our model specifically

for flying-out setting, DiffDreamer has a significant ad-

vantage over naı̈ve autoregression. Since we are working
on outdoor scenes, dramatic depth discontinuities will ap-
pear [22]. This is especially obvious when the flying-out
motion is not just a straight translation. Our bi-directional
method is a good counter to this issue since future frame
guidance and simultaneous refinement can alleviate the ar-
tifacts. We show example flying-out sequences in Fig. 10
and include accompanying videos with 100 steps.

D. Technical details
We use the U-Net backbone from [20] and train all mod-

els for 1M iterations with a mini-batch size of 128. We
trained our model for roughly a week and 3 days respec-
tively for LHQ [85] and ACID [41], on 2 NVIDIA RTX
8000 GPUs. We compare against the released pretrained
InfNat and InfNat-zero models, which were trained for 8
days on 10 GPUs, and 6 days on 8 GPUs respectively. We
build our model on top of Palette [70] and use the Adam
optimizer with a learning rate of 1e-4 and a 10k linear
learning rate warm-up schedule. We also employ 0.9999
EMA for our model. During both training and inference,
we use a linear noise schedule of (1e-6, 0.01) with 2000
time steps. Following prior works [41, 39], we extract
monocular-predicted disparity maps with MiDaS [61], and
sky region masks using DeepLab [12]. We adopt the au-
tocruise algorithm from [41] to sample the camera path for
both training and inference. The autocruise algorithm uses
the disparity map to estimate the skyline and horizon, then
generate a camera trajectory that avoids hitting the ground
or hills. We follow [39] during inference and use a cam-
era speed of 0.1875. We train and evaluate our model on
image resolution of 128×128 to be consistent with prior
work [39].

E. Autocruise specifics
We use the autocruise algorithm from [41] to generate

camera trajectories for both training and evaluation. As we
only have raw images as training data, whose intrinsics are
unknown and cannot be easily inferred, we follow [39] and
randomly sample the field of view (FoV) between 45◦ and
70◦, and fix to 55◦ during testing. Autocruise algorithm
deploys a mechanism to predict the next camera pose by
encouraging the next view to have a τsky fraction of sky re-
gions (determined by thresholding disparity less than 0.08)
and a fraction of τnear fraction of nearby regions (deter-
mined by thresholding disparity larger than 0.4). We follow



Figure 8: Perpetual view synthesis of a sequence over 500 steps.

Figure 9: Failure cases when the model’s output is not diverse enough to support future frames (left) or the autocruise
algorithm gets too close to the mountains/ground (right).

[39] to uniformly sample τnear from [0.2, 0.4] and τsky from
[0.25, 0.45] during training, and fix them to be 0.25 and 0.1
respectively during inference. In contrast to [41, 39], which
only moves a small fraction τlerp = 0.05 of the way to
the target directions at each frame to ensure smooth camera
pose changing, we only use τlerp = 0.05 during inference
of our next frame and increase τlerp = 0.3 for generating
the pseudo future frame. We uniformly sample τlerp from
[0.0, 0.3] during training. We direct readers to [41, 39] for
further specifics of the autocruise algorithm.

F. Mesh renderer specifics
We use a PyTorch implementation [79] of a 3D mesh

renderer [23]. Following [41], each pixel is projected into
the 3D space using its disparity and is then treated as a ver-
tex connected with its neighbors to form a triangle mesh. To
obtain the missing region masks, we follow [41] and thresh-
old the gradient of the input disparity by 0.3 to make a mask,
which refers to the regions with sharp disparity change. We
project the mask to target the camera pose to get the final
missing region mask.

G. Dataset pre-processing
Both of the LHQ [85] dataset and the ACID [41] dataset

contains many samples unsuitable for training scene ex-

trapolation models. This includes images focusing on the
foreground and images of the ground, with camera poses
pointed downward. Following [39], we filter out images
whose minimum MiDaS [61] predicted disparity value is
larger than 200.

H. Failure cases
There are two main causes for failures. First, we do not

enforce diversity of outputs. During training, the model al-
ways sees real images. This means during our pseudo pairs
generation, the corrupted version of the ground truth image
will still be diverse, even if it is under a lower frequency due
to warping artifacts. However, while we are going signifi-
cantly beyond the input image’s content, any future frame
will solely rely on the model’s outputs, which may not ex-
hibit enough diverse content for moving forward. We show
an example of this case in Fig. 9. We believe it is exciting
to extend DiffDreamer to support vector conditioning, e.g.,
CLIP embedding conditioning, to enforce output diversity.

Second, as our model has significantly better geometry
alignment than [41], the autocruise algorithm fails more of-
ten, causing the camera trajectory to hit mountains or the
ground, despite our best efforts in tuning its parameters. We
show an example of this failure case in Fig. 9.
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Figure 10: Flying-out 100 steps of the input images.
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Figure 11: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion.
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Figure 12: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion.
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Figure 13: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion. Diff-
Dreamer is able to preserve consistency when there is no significant refinement needed.
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Figure 14: Additional qualitative results: Six distinct realizations, synthesized over 50 steps of forward motion, where we
encourage output diversity by additionally conditioning on input patterns.


